west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "ZHU Haijun" 5 results
  • Repetitive transcranial magnetic stimulation significantly improves cognitive impairment and neuronal excitability during aging in mice

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that has been paid attention to with increasing interests as a therapeutic neural rehabilitative tool. Studies confirmed that high-frequency rTMS could improve the cognitive performance in behavioral test as well as the excitability of the neuron in animals. This study aimes to investigate the effects of rTMS on the cognition and neuronal excitability of Kunming mice during the natural aging. Twelve young mice, 12 adult mice, and 12 aged mice were used, and each age group were randomly divided into rTMS group and control group. rTMS-treated groups were subjected to high-frequency rTMS treatment for 15 days, and control groups were treated with sham stimulation for 15 days. Then, novel object recognition and step-down tests were performed to examine cognition of learning and memory. Whole-cell patch clamp technique was used to record and analyze resting membrane potential, action potential (AP), and related electrical properties of AP of hippocampal dentate gyrus (DG) granule neurons. Data analysis showed that cognition of mice and neuronal excitability of DG granule neurons were degenerated significantly as the age increased. Cognitive damage and degeneration of some electrical properties were alleviated under the condition of high-frequency rTMS. It may be one of the mechanisms of rTMS to alleviate cognitive damage and improve cognitive ability by changing the electrophysiological properties of DG granule neurons and increasing neuronal excitability.

    Release date:2020-08-21 07:07 Export PDF Favorites Scan
  • Research progress on the effect of transcranial magnetic stimulation on learning, memory and plasticity of brain synaptic

    Transcranial magnetic stimulation (TMS) as a noninvasive neuromodulation technique can improve the impairment of learning and memory caused by diseases, and the regulation of learning and memory depends on synaptic plasticity. TMS can affect plasticity of brain synaptic. This paper reviews the effects of TMS on synaptic plasticity from two aspects of structural and functional plasticity, and further reveals the mechanism of TMS from synaptic vesicles, neurotransmitters, synaptic associated proteins, brain derived neurotrophic factor and related pathways. Finally, it is found that TMS could affect neuronal morphology, glutamate receptor and neurotransmitter, and regulate the expression of synaptic associated proteins through the expression of brain derived neurotrophic factor, thus affecting the learning and memory function. This paper reviews the effects of TMS on learning, memory and plasticity of brain synaptic, which provides a reference for the study of the mechanism of TMS.

    Release date: Export PDF Favorites Scan
  • The inverse stochastic resonance in a small-world neuronal network under electromagnetic stimulation

    Electromagnetic stimulation is an important neuromodulation technique that modulates the electrical activity of neurons and affects cortical excitability for the purpose of modulating the nervous system. The phenomenon of inverse stochastic resonance is a response mechanism of the biological nervous system to external signals and plays an important role in the signal processing of the nervous system. In this paper, a small-world neural network with electrical synaptic connections was constructed, and the inverse stochastic resonance of the small-world neural network under electromagnetic stimulation was investigated by analyzing the dynamics of the neural network. The results showed that: the Levy channel noise under electromagnetic stimulation could cause the occurrence of inverse stochastic resonance in small-world neural networks; the characteristic index and location parameter of the noise had significant effects on the intensity and duration of the inverse stochastic resonance in neural networks; the larger the probability of randomly adding edges and the number of nearest neighbor nodes in small-world networks, the more favorable the anti-stochastic resonance was; by adjusting the electromagnetic stimulation parameters, a dual regulation of the inverse stochastic resonance of the neural network can be achieved. The results of this study provide some theoretical support for exploring the regulation mechanism of electromagnetic nerve stimulation technology and the signal processing mechanism of nervous system.

    Release date: Export PDF Favorites Scan
  • Effects of repetitive transcranial magnetic stimulation on neuronal excitability and ion channels in hindlimb unloading mice

    Weightlessness in the space environment affects astronauts’ learning memory and cognitive function. Repetitive transcranial magnetic stimulation has been shown to be effective in improving cognitive dysfunction. In this study, we investigated the effects of repetitive transcranial magnetic stimulation on neural excitability and ion channels in simulated weightlessness mice from a neurophysiological perspective. Young C57 mice were divided into control, hindlimb unloading and magnetic stimulation groups. The mice in the hindlimb unloading and magnetic stimulation groups were treated with hindlimb unloading for 14 days to establish a simulated weightlessness model, while the mice in the magnetic stimulation group were subjected to 14 days of repetitive transcranial magnetic stimulation. Using isolated brain slice patch clamp experiments, the relevant indexes of action potential and the kinetic property changes of voltage-gated sodium and potassium channels were detected to analyze the excitability of neurons and their ion channel mechanisms. The results showed that the behavioral cognitive ability and neuronal excitability of the mice decreased significantly with hindlimb unloading. Repetitive transcranial magnetic stimulation could significantly improve the cognitive impairment and neuroelectrophysiological indexes of the hindlimb unloading mice. Repetitive transcranial magnetic stimulation may change the activation, inactivation and reactivation process of sodium and potassium ion channels by promoting sodium ion outflow and inhibiting potassium ion, and affect the dynamic characteristics of ion channels, so as to enhance the excitability of single neurons and improve the cognitive damage and spatial memory ability of hindlimb unloading mice.

    Release date: Export PDF Favorites Scan
  • Effects of magnetic stimulation at different frequencies on neuronal excitability and voltage-gated potassium channels in vitro brain slices

    As a noninvasive neuromodulation technique, transcranial magnetic stimulation (TMS) is widely used in the clinical treatment of neurological and psychiatric diseases, but the mechanism of its action is still unclear. The purpose of this paper is to investigate the effects of different frequencies of magnetic stimulation (MS) on neuronal excitability and voltage-gated potassium channels in the in vitro brain slices from the electrophysiological perspective of neurons. The experiment was divided into stimulus groups and control group, and acute isolated mice brain slices were applied to MS with the same intensity (0.3 T) at different frequencies (20 Hz and 0.5 Hz, 500 pulses) respectively in the stimulus groups. The whole-cell patch clamp technique was used to record the resting membrane potential (RMP), action potential (AP), voltage-gated potassium channels current of hippocampal dentate gyrus (DG) granule cells. The results showed that 20 Hz MS significantly increased the number of APs released and the maximum slope of a single AP, reduced the threshold of AP, half width and time to AP peak amplitude, and improved the excitability of hippocampal neurons. The peak currents of potassium channels were decreased, the inactivation curve of transient outward potassium channels shifted to the left significantly, and the time constant of recovery after inactivation increased significantly. 0.5 Hz MS significantly inhibited neuronal excitability and increased the peak currents of potassium channels, but the dynamic characteristics of potassium channels had little change. The results suggest that the dynamic characteristics of voltage-gated potassium channels and the excitability of hippocampal DG granule neurons may be one of the potential mechanisms of neuromodulation by MS.

    Release date:2021-06-18 04:50 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content